Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus.

نویسندگان

  • S W Wurts
  • D M Edgar
چکیده

The daily timing of rapid eye movement (REM) sleep reflects an interaction between the circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus (SCN) and a homeostatic process that induces compensatory REM sleep in response to REM sleep loss. Whether the circadian variation in REM sleep propensity is caused by active promotion, inhibition, or passive gating of REM sleep homeostasis by the SCN is unknown. To investigate these possibilities, compensatory responses to 24 hr REM sleep deprivation (RSD) were compared between SCN-lesioned (SCNx) and sham-lesioned rats at different times of day in constant dark. The attempts to enter REM sleep (REM tendency) increased during RSD in all rats and were modulated by circadian phase in sham-lesioned, but not SCNx rats. REM sleep homeostasis interacted with circadian time, such that REM tendency doubled during the rest phase in sham-lesioned rats relative to SCNx rats (F((6,93)) = 17.9; p = 0.0001). However, REM tendency was indistinguishable between SCNx and sham-lesioned rats during the activity phase, suggesting the SCN does not inhibit REM tendency at this time. By contrast, the amount of compensatory REM sleep examined 2, 6, 12, or 24 hr after RSD did not depend on circadian phase. Thus, transitions into REM sleep are facilitated by the SCN during the rest phase, but the amount of REM sleep, once initiated, is determined primarily by homeostatic mechanisms. This work supports a role for the SCN in the active promotion of REM sleep at specific times of day.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The septum modulates REM sleep-related penile erections in rats

Rapid eye movement sleep in males is characterized by penile erection along with EEG desynchronization, muscle atonia, ponto-geniculo-occipital waves, and rapid eye movements (REM). The central neural mechanisms regulating sleep related erections (SREs) are not known. Recently, the lateral preoptic area has been shown to contribute in sleep-related erectile mechanisms. The present study was con...

متن کامل

The septum modulates REM sleep-related penile erections in rats

Rapid eye movement sleep in males is characterized by penile erection along with EEG desynchronization, muscle atonia, ponto-geniculo-occipital waves, and rapid eye movements (REM). The central neural mechanisms regulating sleep related erections (SREs) are not known. Recently, the lateral preoptic area has been shown to contribute in sleep-related erectile mechanisms. The present study was con...

متن کامل

RAPID EYE MOVEMENT SLEEP DEPRIVATION INDUCES ACETYLCHOLINESTERASE A CTIVITY IN THE PREOPTIC AREA OF THE RAT BRAIN

Acetylcholinesterase (AchE) is a large glycoprotein that, aside from its known cholinolytic activity, co-exists with other transmitter systems and possesses other functions. In the present study, the effects of short-term rapid-eye-movement sleep deprivation (REM-SD) on AchE activity in the anterior hypothalamic area have been investigated. Using the flower-pot method, adult male albino ra...

متن کامل

Spectral EEG sleep profiles as a tool for prediction of clinical response to antidepressant treatment

Two qualitatively different brain states characterize normal human sleep: non–rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is further subdivided into four stages: stage 1 is the lightest and stage 4 the deepest. Stages 3 and 4 are often defined as δ sleep or slow-wave sleep (SWS) due to the occurrence of slow (0.5-3.5 Hz) “delta” waves. REM sleep (also called paradox...

متن کامل

Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes.

In mammals, sleep is regulated by circadian and homeostatic mechanisms. The circadian component, residing in the suprachiasmatic nucleus (SCN), regulates the timing of sleep, whereas homeostatic factors determine the amount of sleep. It is believed that these two processes regulating sleep are independent because sleep amount is unchanged after SCN lesions. However, because such lesions necessa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 11  شماره 

صفحات  -

تاریخ انتشار 2000